210 research outputs found

    Development and mechanical characterisation of self-compressed collagen gels

    Get PDF
    Collagen gels are considered a promising biomaterial for the manufacturing of tissue engineering scaffolds, however, their mechanical properties often need to be improved to enable them to provide enough mechanical support during the course of tissue regeneration process. In this paper, we present a simple self-compression technique for the improvement of the mechanical properties of collagen gels, identified by the fitting of bespoke biphasic finite element models. Radially-confined highly hydrated gels were allowed to self-compress for 18 hours, expelling fluid, and which were subsequently subjected to unconfined ramp-hold compression. Gels, initially of 0.2%, 0.3% and 0.4% (w/v) collagen and 13mm thickness, transformed to 2.9 ± 0.2%, 3.2 ± 0.3% and 3.6 ± 0.1% (w/w) collagen and 0.45 ± 0.06 mm, 0.69 ± 0.04 mm and 0.99 ± 0.07 mm thickness. Young's moduli of the compressed gels did not increase with increasing collagen fibril density, whilst zero-strain hydraulic permeability significantly decreased from 51 to 21 mm4/Ns. The work demonstrates that biphasic theory, applied to unconfined compression, is a highly appropriate paradigm to mechanically characterise concentrated collagen gels and that confined compression of highly hydrated gels should be further investigated to enhance gel mechanical performance

    Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects

    Get PDF
    Porous titanium scaffolds have good mechanical properties that make them an interesting bone substitute material for large bone defects. These scaffolds can be produced with selective laser melting, which has the advantage of tailoring the structure's architecture. Reducing the strut size reduces the stiffness of the structure and may have a positive effect on bone formation. Two scaffolds with struts of 120-μm (titanium-120) or 230-μm (titanium-230) were studied in a load-bearing critical femoral bone defect in rats. The defect was stabilized with an internal plate and treated with titanium-120, titanium-230, or left empty. In vivo micro-CT scans at 4, 8, and 12 weeks showed more bone in the defects treated with scaffolds. Finally, 18.4 ± 7.1 mm3(titanium-120, p = 0.015) and 18.7 ± 8.0 mm3(titanium-230, p = 0.012) of bone was formed in those defects, significantly more than in the empty defects (5.8 ± 5.1 mm3). Bending tests on the excised femurs after 12 weeks showed that the fusion strength reached 62% (titanium-120) and 45% (titanium-230) of the intact contralateral femurs, but there was no significant difference between the two scaffolds. This study showed that in addition to adequate mechanical support, porous titanium scaffolds facilitate bone formation, which results in high mechanical integrity of the treated large bone defects. Copyrigh

    Morphometric and Mechanical Analyses of Calcifications and Fibrous Plaque Tissue in Carotid Arteries for Plaque Rupture Risk Assessment

    Get PDF
    Objective: Atherosclerotic plaque rupture in carotid arteries is a major source of cerebrovascular events. Calcifications are highly prevalent in carotid plaques, but their role in plaque rupture remains poorly understood. This work studied the morphometric features of calcifications in carotid plaques and their effect on the stress distribution in the fibrous plaque tissue at the calcification interface, as a potential source of plaque rupture and clinical events. Methods: A comprehensive morphometric analysis of 65 histology cross-sections from 16 carotid plaques was performed to identify the morphology (size and shape) and location of plaque calcifications, and the fibrous-tissue fiber organization around them. Calcification-specific finite element models were constructed to examine the fibrous plaque tissue stresses at the calcification interface. Statistical correlation analysis was performed to elucidate the impact of calcification morphology and fibrous tissue organization on interface stresses. Results: Hundred-seventy-one calcifications were identified on the histology cross-sections, which showed great variation in morphology. Four distinct patterns of fiber organization in the plaque tissue were observed around the calcification. They were termed as attached, pushed-aside, encircling and random patterns. The stress analyses showed that calcifications are correlated with high interface stresses, which might be comparable to or even above the plaque strength. The stress levels depended on the calcification morphology and fiber organization. Thicker calcification with a circumferential slender shape, located close to the lumen were correlated most prominently to high interface stresses. Conclusion: Depending on its morphology and the fiber organization around it, a calcification in an atherosclerotic plaque can act as a stress riser and cause high interface stresses. Significance: This study demonstrated the potential of calcifications in atherosclerotic plaques to cause elevated stresses in plaque tissue and provided a biomechanical explanation for the histopathological findings of calcification-associated plaque rupture

    Submicron patterns-on-a-chip: Fabrication of a microfluidic device incorporating 3D printed surface ornaments

    Get PDF
    Manufacturing high throughput in vitro models resembling the tissue microenvironment is highly demanded for studying bone regeneration. Tissues such as bone have complex multiscale architectures insid

    Mechanics of Biomaterials

    No full text
    Investigation of the mechanical behavior of biological tissues and biomaterials has been an active area of research for several decades. However, in recent years, the enthusiasm in understanding the mechanical behavior of biological tissues and biomaterials has increased significantly due to the development of novel biomaterials for new fields of application, along with the emergence of advanced computational techniques. The current Special Issue is a collection of studies that address various topics within the general theme of “mechanics of biomaterials”. This editorial aims to present the context within which the studies of this Special Issue could be better understood. I, therefore, try to identify some of the most important research trends in the study of the mechanical behavior of biological tissues and biomaterials

    Biomaterials and tissue biomechanics: A match made in heaven?

    No full text
    Biomaterials and tissue biomechanics have been traditionally separate areas of research with relatively little overlap in terms of methodological approaches. Recent advances in both fields on the one hand and developments in fabrication techniques and design approaches on the other have prepared the ground for joint research efforts by both communities. Additive manufacturing and rational design are examples of the revolutionary fabrication techniques and design methodologies that could facilitate more intimate collaboration between biomaterial scientists and biomechanists. This editorial article highlights the various ways in which the research on tissue biomechanics and biomaterials are related to each other and could benefit from each other’s results and methodologies.Biomaterials & Tissue Biomechanic

    Mechanical meta-materials

    No full text
    The emerging concept of mechanical meta-materials has received increasing attention during the last few years partially due to the advances in additive manufacturing techniques that have enabled fabricating materials with arbitrarily complex micro/nano-architectures. The rationally designed micro/nano-architecture of mechanical meta-materials gives rise to unprecedented or rare mechanical properties that could be exploited to create advanced materials with novel functionalities. This paper presents an overview of the recent developments in the area of mechanical meta-materials. Extremal materials that are extremely stiff in certain modes of deformation, while extremely soft in other modes of deformation are discussed first. Penta-mode, dilational, and other auxetic meta-materials are all discussed within the context of extremal materials. Negative meta-materials are presented next with special focus on materials with negative compressibility and negative stiffness. Ultra-property meta-materials are the topic of the following section that covers ultra-light, ultra-stiff, and ultra-tough materials. Finally, the emerging areas of research in mechanical meta-materials including active, adaptive, programmable, and origami-based mechanical meta-materials are reviewed. This paper concludes with some suggestions for future research.Gold For Gold voucher Au-036289Biomaterials & Tissue Biomechanic

    Design for additive bio-manufacturing: From patient-specific medical devices to rationally designed meta-biomaterials

    No full text
    Recent advances in additive manufacturing (AM) techniques in terms of accuracy, reliability, the range of processable materials, and commercial availability have made them promising candidates for production of functional parts including those used in the biomedical industry. The complexity-for-free feature offered by AM means that very complex designs become feasible to manufacture, while batch-size-indifference enables fabrication of fully patient-specific medical devices. Design for AM (DfAM) approaches aim to fully utilize those features for development of medical devices with substantially enhanced performance and biomaterials with unprecedented combinations of favorable properties that originate from complex geometrical designs at the micro-scale. This paper reviews the most important approaches in DfAM particularly those applicable to additive bio-manufacturing including image-based design pipelines, parametric and non-parametric designs, metamaterials, rational and computationally enabled design, topology optimization, and bio-inspired design. Areas with limited research have been identified and suggestions have been made for future research. The paper concludes with a brief discussion on the practical aspects of DfAM and the potential of combining AM with subtractive and formative manufacturing processes in so-called hybrid manufacturing processes.Biomaterials & Tissue Biomechanic

    Current trends in metallic orthopedic biomaterials: From additive manufacturing to bio-functionalization, infection prevention, and beyond

    No full text
    There has been a growing interest in metallic biomaterials during the last five years, as recent developments in additive manufacturing (=3D printing), surface bio-functionalization techniques, infection prevention strategies, biodegradable metallic biomaterials, and composite biomaterials have provided many possibilities to develop biomaterials and medical devices with unprecedented combinations of favorable properties and advanced functionalities. Moreover, development of biomaterials is no longer separated from the other branches of biomedical engineering, particularly tissue biomechanics, musculoskeletal dynamics, and image processing aspects of skeletal radiology. In this editorial, I will discuss all the above-mentioned topics, as they constitute some of the most important trends of research on metallic biomaterials. This editorial will, therefore, serve as a foreword to the papers appearing in a special issue covering the current trends in metallic biomaterials.Biomaterials & Tissue Biomechanic

    Additively manufactured porous biomaterials and implants

    No full text
    Biomaterials & Tissue Biomechanic
    corecore